

New and Novel Tools For Cancer Research

P5091

Selective inhibitor of the ubiquitin-specific protease USP7 (IC_{50} =4.2 μ M) 1,2 . Induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance 1 . Displays antiangiogenesis activity *in vivo* 2 .

10-1422

5 mg, 25 mg

ML-239

Cancer stem cells (CSC) are resistant to standard cancer treatments. ML-239 was discovered in a screen using CSC-like cells created by inducing human breast epithelial cells into an epithelial-to-mesenchymal transdifferentiated state. ML-239 was found to be selectively toxic to these cells (IC50= 1.2 $\mu M)^3$. Although its direct target has not yet been identified ML-239 is an important tool for research in selective killing of CSCs.

10-1417

5 mg, 25 mg

CZC-54252

Potent inhibitor of the leucine-rich repeat kinase 2 (LRRK2). IC_{50} =1.28 nM and 1.85 nM for wild type and G2019S mutant respectively⁴.

10-1421

5 mg, 25 mg

Dynasore

Dynasore, a highly selective dynamin inhibitor (GTPase activity), suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments⁵.

10-1427

5 mg, 25 mg

KY-02111

Inhibits Wnt signaling but in a manner that is distinct from previously described Wnt inhibitors⁶. Promotes cardiac differentiation of human pluripotent stem cells.

10-1437

5 mg, 25 mg

P5091

ML-239

$$\bigcup_{O}^{OH}\bigcup_{OH}^{OH}$$

Dynasore

$$\begin{array}{c|c} & & & \\ & & & \\ \text{CI} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

KY-02111

References

1. D Chauhan, et al. 2012 Cancer Cell 22 345

 J Weinstock, et al. 2012 ACS Med. Chem. Lett. 3 789

LC Carmody, et al. 2012 J. Biomol. Screening 17 1204

4. N Ramsden, *et al.* 2011 ACS Chem. Biol. **6** 1021

5. H Yamada, et al. 2009 Biochem. Biophys. Res. Commun. **390** 1142

6. I Minami, et al. 2012 Cell Rep. 2 1448

