

ENaC

Antibodies • Proteins • Kits • Small Molecules

Epithelial Sodium Channel Antibodies

Description	Catalog No.	Size
Rabbit Anti-ENaC Alpha Polyclonal Antibody Species Reactivity: Rt/Ms Applications: WB/IHC/IF Product Citations: 13	SPC-403D	100μg
Rabbit Anti-ENaC Beta Polyclonal Antibody Species Reactivity: Hu/Rt/Ms Applications: WB/IHC/IF/IP Product Citations: 14	SPC-404D	100μg
Rabbit Anti- ENaC Gamma Polyclonal Antibody <i>Species Reactivity:</i> Rt/Ms <i>Applications:</i> WB/IHC/IF <i>Product Citations:</i> 14	SPC-405D	100μg

Target Information:

Epithelial Sodium Channels (ENaC) are a membrane ion channel permeable to Na^+ ions. It is located in the apical plasma membrane of epithelia in the kidneys, lung, colon, and other tissues where it plays a role in transepithelial Na^+ -ion transport. Specifically Na^+ transport via ENaC occurs across many epithelial surfaces, and plays a key role in regulating salt and water absorption. ENaCs are composed of three structurally related subunits that form a tetrameric channel, alpha (α) , Beta (β) , and gamma (γ) . The expression of its alpha and beta subunits is enhanced as keratinocytes differentiate. The beta and gamma-ENaC subunits are essential for edema fluid to exert its maximal effect on net fluid absorption by distal lung epithelia.